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ABSTRACT

Axial compression tests were performed on debonded sandwich composites made of

graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were

manufactured using a vacuum bagging process. The face-sheet and the sandwich beam were co-

cured. Delamination between one of the face sheets and the core was introduced by using a

Teflon _ layer during the curing process. Axial compression tests were performed to determine

the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double

Cantilever Beam tests were performed to determine, respectively, the strength and fracture

toughness of the face-sheet ,/core interface. From the test results semi-empirical formulas were

derived for the fracture toughness and ultimate compressive load carrying capacity in terms of

the core density, core thickness, face-sheet thickness and debond length. Four different failure

modes and their relation to the structural properties were identified. Linear buckling analysis was

found to be inadequate in predicting the compressive load carrying capacity of the debonded

sandwich composites.
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1. INTRODUCTION

There is a renewed interest in using sandwich construction in aerospace structures mainly

driven by the possibility of reducing weight and cost. Fiber composites such as graphite/epoxy

are favored as the face-sheet material because of their high stiffness and ability to be co-cured

with many core materials. In aeronautical applications sandwich constructions find application in

wing skins and fuselage among other structures. Debonding of the face-sheet fi'om the core is a

serious problem in sandwich constructions. This may occur during the fabrication process due to

inadvertent introduction of foreign matter at the interface or due to severe loads as in foreign

object impact. The debonded sandwich panels are susceptible to buckling under in-plane

compressive loads, which may lead to the propagation of the delamination, and/or core and face-

sheet failure. Hence there is a need for a systematic study to understand how the core and face-

sheet properties affect the compression behavior of a debonded sandwich composite.

There are many works concerning buckling of delaminated composite beams and plates.

These models were later extended to sandwich beams. Simitses et al. (1985) and Yin et al.

(1986) developed analytical models to study the effects of delamination on the ultimate load

capacity of beam-plates. The latter paper included the post-buckling behavior as well as energy

release rate calculations to predict delamination growth. Chen (1993) included the transverse

shear effects on buckling, post-buckling and delamination growth in one-dimensional plates. A

nonlinear solution method was developed by Kassapoglou (1988) for buckling and post-buckling

of elliptical delaminations under compressive loads. This method employs a series solution

method in conjunction with the perturbation technique to solve the laminated plate equations for

large deflections. Experiments were performed on sandwich panels containing delaminated face-

sheets (note that the delaminations were in between layers of the face-sheet; the face-sheet/core
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interfacedid notcontaindelaminations).The nonlinearmodelswereableto predict the onsetof

delaminationandfailure loadsin the experiments.

Minguetet al. (1987) studiedthe compressivefailure of sandwichpanelswith avarietyof

corematerialsincludinghoneycombcore.They observedthreetypesof failure modes- core

failure, disbondandfacesheetfracture.Basedon thetestresultstheydevelopeda nonlinear

model to predictthesefailuresusing appropriatefailure criterionfor eachfailure mode.Sleight

andWang(1995)comparedvariousapproximatenumericaltechniquesfor predicting the

buckling loadsofdebondedsandwichpanels,andcomparedthemwith planefinite element

analysis.Theyconcludedthat 2-D planestrainFEanalysisis necessaryin orderto predict the

buckling loadsaccurately.Hwu andHu (1992)extendedtheworkofYin et al. (1986) for the

caseof debondedsandwichbeams.They developedformulasfor bucklingloadsin termsof

sandwichbeampropertiesanddebondlength.Kim andDharan(1992)usedabeamon elastic

foundationmodelandcomputedthe energyreleaseratein debondedsandwichpanels.Basedon

fracturemechanicstheypredictedcritical debondlengthsfor crackpropagation.They usedtheir

modelto predictfailure in plastic-foamcoresandwichpanels.An extensiveexperimentalstudy

wasconductedby Kardomateas(1990) to understandthebucklingandpost-bucklingbehaviorof

delaminatedKevlar®/epoxy laminates. The experimental program documented the load-

deflection diagrams, deformation shape in post-buckling and growth of delamination.

From this literature survey it is clear that a systematic study of compression behavior of

sandwich panels with debonded face-sheets, especially failure in the post-buckling regime, is

overdue. Any modeling should be preceded by a testing program to understand the effects of

various parameters such as face-sheet stiffness, core stiffness and core thickness, and debond



lengthon the buckling and post-buckling behavior. In the present study an experimental program

has been undertaken to achieve the aforementioned objectives.

2. _L-_TERIALS .-_ND METHODS

2.1 Material System

The sandwich composites used in this study consisted of graphite/epoxy face-sheets and

aramid honeycomb core. The face sheet was a laminated plain-woven composite fabricated using

prepregs manufactured by Fibrite (product number HMF 5-322D/97714AC). Some properties

provided by the manufacturer (55% - 60 % fiber volume) are given in Table 1.

Table 1. Properties of the graphite�epoxy face-sheet material

Compressive Strength 531 MPa (77 ksi)

669 MPa (97 ksi)"Tensile Strength

Tensile Modulus 53 GPa (7.7 msi)

Tensile Strain (max-) t2, 658 gs

Flat,vise Tensile Strengt h 4.78 MPa (693 psi)
Pre-cured Resin Content 41.0 % by volume

The core material used is an aramid honeycomb manufactured by Euro-Composites. It is made

up of an aramid fabric bonded together and expanded to form little hexagonal cells. This

structure is then coated with a phenolic resin. The honeycomb structure has orthotropic

properties, and its principal material directions are denoted by L, W, and t. As depicted in Fig. 1

the L-direction, the ribbon direction, refers to the direction in which the constituent tapes lie and

are bonded together. The W-direction is in the plane of the material, but perpendicular to the L-

direction. The t-direction is the through-the-thickness direction.
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Figure 1. Principal directions of the honeycomb core

An optional addition to the sandwich composite is an adhesive film. Generally, this layer

is added between the face-sheet and the core to ensure a good interface bond, but at the cost of

increase in the weight and cost of the structure.

In the present study the face-sheet consisted of 1, 3, 5 or 7 plies of the graphite/epoxy

cloth. All the plies were oriented at 0° direction with respect to the L-direction of the core. The

nominal thickness of the face-sheet after curing was 0.22x 10 -3m (8.7x 10 .3 in.) per ply. Three

different core materials with densities 29, 48 and 96 kg/m 3 (1.8, 3 and 6 pcf(pounds per cubic

feet)) were used. Further these core materials were available in three thickness: 6.35× 10.3 m,

9.525× 10 .3 m, and 12.7x10 -3 m (0.25, 0.375 and 0.5 inches). Thus, there were 9 different core

configurations available for testing. The cell size for all core materials was 3.2x 10 .3 m (0.125

in.). The transverse shear properties of the core are available from the manufacturer, and are

presented in Table 2. Some standard tests were performed to measure in-plane properties (Avery,

1998). For the 6 pcf core the Young's moduli in the L- and W-directions, respectively, were 7.73

MPa (1,121 psi) and 4.17 MPa (604 psi). The tensile strength in the W-direction is controlled by
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the bonding between the tapes, and is measured to be about 0.21 MPa (30.4 psi). The strenTda in

the L-direction could not be measured as the core collapses in the W-direction during the test,

and the strength approaches that of the ribbons used in the manufacture of the core.

Table 2. Properties of the honeycomb core material

Core density

K_m 3 (pcf)

29 (1.8)

Shear Modulus

Cn.t. MPa (ksi)

27 !3.9!

Shear Strength

Set. MPa (psi)

0.62 (90)

1.32(191)

Shear Modulus

Gwt. MPa (ksi)

16 (2.3)

Shear Strength

Swt, MPa (psi)

0.38 (55)
48 (3.0) 48 (7.0) 30 (4.4) 0.72 (104)

96 (6.0) 96 (13.9) 2.80 (406) 68 (9.9) 1.68 (244)

2.2 Fabrication Process

The fabrication process used was similar to that used in the production of low cost

aircraft component. Also, for speediness and cost reduction, the panels were co-cured, i.e., the

face-sheets and the core are bonded while the face-sheet is being cured. The majority of the

panels manufactured for these experiments used only the excess epoxy from the face-sheet

prepregs to bond to the core material, although the addition of an epoxy film adhesive (Hysol

XEA 9695) was tried in some througla-the-thickness tensile tests. Delaminations were introduced

into the specimens by inserting non-porous Teflon ® strips between the prepreg and the

honeycomb core. The temperature cycle used for curing is shown in Fig. 2. Details of the curing

procedure including the equipment used can be found in Avery (1998).
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Figure 2. Temperature cycle used for curing the sandwich composites

2.3 DCB Tests

Double Cantilever Beam Tests (see Fig. 3) were performed to estimate the interracial

fi'acture toughness of the face-sheet/core interface. Specimens were manufactured fi_om a flat

sandwich plate containing a 1-inch non-porous Teflon strip between the face-sheet and core

material. This Teflon ® sheet induces an initial delamination at the interface from which a crack

can be propagated during the test. Specimens of size 25.4×10 .3 m × 178×10 -3 m (1 in. × 7 in.),

were cut from the plates so that the delamination was contained in its first 25.4× 10 -3 m (1 in.) of

length. Two groups of tests, each consisting of nine sets of tests, were conducted. In one group,

the specimens had cracks propagated along their core's L-direction, and in the other the crack

was propagated in the W-direction. In all tests, load was applied at a rate of 0.0127 meters (0.5

inch) per minute cross-head displacement.

A special fixture was manufactured (Fig. 3) so that the specimens could be loaded and

unloaded with a minimal amount of fi'iction (Avery, 1998). A Greaco-Latin factorial test plan

(Schenck, 1961) was used to understand the effects of number face-sheet plies (N-L), the core



density(Pc),andthe core thickness(b.,:)on the fracture toughness of the core/face-sheet interface.

A 3x3 test matrix was constructed such that no two combinations of independent variables were

repeated. The three test variables corresponding to each of the 9 tests are shown in Table 3. Five

specimens were tested for each test set.

Table 3. Double cantilever beam test matrix

Test 1

NL=I

Pc = 29 K_m 3 (I.8 per)

h¢ = 0.00635 m (0.25 in.)

Test 4

NL=3

Pc = 29 K_m 3 (1.8 pcf)

h¢ = 0.00953 m (0.375 in.)

Test 7

NL=5

Pc = 29 K_m 3 (1.8 pcf)

h¢ = 0.0127 m (0.5 in.)

Test 2

NL=I

Pc = 48 Kg/m 3 (3.0 pcf)

h_ = 0.00953 m (0.375 in.)

Test 5

NL=3

p_ = 48 K_m 3 (3.0 pcf)

h,: = 0.0127 m (0.5 in.)

Test 8

NL=5

Pc = 48 Kg/m 3 (3.0 pcf)

h_ = 0.00635 m (0.25 in.)

Test 3

NL=I

Pc = 96 Kg/m 3 (6.0 pcf)

h_ = 0.0127 m (0.5 in.)

Test 6

NL=3

p_ = 96 Kg/m 3 (6.0 pet')

h¢ = 0.00635 m (0.25 in.)
Test 9

NL=5

Pc = 96 K_m 3 (6.0 pcf)

h¢ = 0.00953 m (0.375 in.)

Figure 3. Double cantilever beam specimen during testing

During the test the crack was allowed to propagate, and then the specimen was unloaded.

A load-displacement curve, such as the one shown in Fig. 4, was generated for each of the

specimens. The area under the load-displacement curve, representing work AU, was obtained by
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integration using the trapezoidal method. The crack area created is measured by multiplying the

specimcn's width by the average crack extension length on each side of the specimen, measured

with a pair of dial calipers. The critical strain energy release was computed using the standard

equation

AU (t)
Gc=_

BAt/

where AU is the energy used to propagate the crack, B is the specimen's width, and tm is the

crack extension length. The DCB test results are discussed in Section 3. Results for individual

tests are available in Avery (1998)
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Figure 4. Typical load-displacement curve of a OCB test

2.4 Flatwise Tensile Test

The specimens for this test were fabricated using 9.525x10 -3 m (0.375 inch) thick

honeycomb material. The combination of core density and number of plies per side alternated

between 1.8 and 3.0 pcf, and 1 and 3 plies, respectively, giving 4 possible configurations. A fifth



set of specimens was made using the film adhesive between the face-sheet and the core in a

single ply face-sheet panel. Thus there were five test sets, each containing 4 specimens. The flat-

wise tensile tests were conducted at NASA Langley Research Center. The specimens were

bonded to a fixture and loaded in tension in the though-the-thickness direction. Displacement

was measured using two high-precision LVDT's mounted on each side of the fixture. Loading

was continued until complete failure of the composite occurred. The results of flat-wise tension

tests are discussed in Section 3.2.

2.5 Axial Compression Test

The objective of the axial compression (in-plane compression) tests was to determine the

effects of face-sheet delamination on the ultimate load carrying capacity in axial compression. A

series of tests were performed on specimens with different core thickness, core density, face-

sheet thickness and delamination length. Each specimen was 102x 10 -3 m (4 in.) long and 51 x 10"

3 m (2 in.) wide. The goal of these tests was to understand the effects of: (i) face-sheet thickness

(t), (ii) core thickness (l'k), (iii) core density (9¢), and (iv) delamination length (a) on the

compressive strength of the sandwich specimen. To minimize the number of tests to be

performed, a Graeco-Latin Factorial test plan was used. This test scheme needs 16 test sets for

the four variables considered in the problem. From the test results an empirical formula for the

compressive strength was derived in terms of the four variables considered in the study. The

specimen configurations for each test are presented in Table 4.
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Table 4a. Specimen configurations for the axial compression tests

Test I Test 2 Test 3

at tt a: t_ a3

pet 1%t pc2 he.+ pc3
Test 5 Test 6 Test 7

at t2 a2 t2 a3 t2

9¢.+ 1%., p,+ 1%1 pcJ 1%3
Test 9 Test 10 Test 11

al t3 a2 t3 a3 t3

pc._ 1%3 9c, _ pc+ 1%2
Test 13 Test 14 Test 15

at t+ a2 ta a3 t4

9_ 1%4 9c3 1%3 9c2

a: delamination length; t: face-sheet thickness;

Test 4

tt a4

h<:4 pc4

Test 8

a4

pc.,
Test 12

a4 t3

pc3 1%t

Test 16

a+ t4

tl

t2

1%+

h<:t pet. 1%2
9c: core density; 1%: core thickness

Table 4b. Specimen dimensions and core densities used in the factorial plan

3

4

a, m (in.) l t pc, K_m 3 (pcf)

0.0127 (0.25) I tp 29 (1.8)

0.0254(1.0) t 3tp 48 (3.0)

0.0381 (1.5) 5tp 48 (3.0)

0.0508 (2.0) ! 7tp .. 96 (6.0)

1%, m (in.)

0.00635 (0.25)

0.009525 (0.375)

0.009525 (0..375)

0.0127 (0.5)

tp= ply thickness = 0.22x10 3 m = 8.7x10 "3 in.

A loading fixture was constructed (Avery, 1998) that provided clamped boundary

conditions at the ends of the specimen, while allowing the side edges to be free. It also had the

benefit of not restricting the visibility of the specimen, allowing for photography of the failing

composite. The upper part of the fixture was threaded into the testing machine cross-head, while

the lower part of the fixture was threaded directly into the load cell. Bending moments on the

load cell caused by the post-buckling of specimens were corrected for by using an off-axis

compensating load cell. The fixture was made entirely from steel to minimize the errors from its

compliance.

The specimens were loaded at a rate of 0.3 mm (0.012 in.) per minute cross-head

displacement as recommended by the ASTM standard test method C364. Loading was
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continueduntil the load droppedto about 75percentof the maximumachievedload. The results

of compression tests are discussed in Section 3.3.

3. RESULTS AND DISCUSSION

3.1. lnterfaciai Fracture Toughness

The summary of DCB test results are presented in Table 5. These results are the average

for five specimens. The results indicate that the interracial fracture toughness is generally higher

for a crack propagated in the W-direction than in the L-direction. This result may be due to the

fact that delamination in the W-direction is accompanied by some debonding of the tapes that

make up the honeycomb core. Another interesting observation is that the fracture toughness

increases with the number of face-sheet plies. This is due to the fact that more resin is available

for bonding as the number of face-sheet plies increases.

In order to have a better understanding of the effects of face-sheet plies, core density and

core thickness on the interfacial fracture toughness an empirical formula was derived. The

Greaco-Latin square test plan allows an empirical function of the following

form:

Gc = Cf _(t) f :(pc) f3(hc ) (2)

where C is a constant and fi, )_ andj_ are functions of corresponding arguments. The three

functions are plotted for both L- and W-directions in Figs. 5 through 7. The constant C = 0.0996

for crack propagation in the L-direction and C = 0.0674 for the W-direction. Note that the

number of layers is per face-sheet.
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Set
No.

1

Table 5. Summary of double cantilever beam test results

No. of Core Thickness, hc. Core Density, Pc. Gc (L-dir) Gc (W-dir)
Layers, NL m {in.) K_l.Jm 3 (IbJft 3) NIm (lb./in.) NIm (lb./in.)

1 0.00635 (0.25) 29 (1.8) 420 (2.40) 357 (2.04)

2 1 0.009525 (0.375) 48 (3.0) 186 (1.06) 264 (1.51)

3 1 0.0127 (0.5) 96 (6.0) 133 (0.76) 254 (1.45)

4 3 0.009525 (0.375) 79 (1.8) 980 (5.60) 1,139 (6.51)

5 3 0.0127 (0.5) 48 (3.0) [,050 (6.00) 1,323 (7.56)

6 3 0.00635 (0.25) 96 (6.0) 429 (2.45) 695 (3.97)

7 5 0.0127 (0.5) 29 (1.8) 1,043 (5.96) 1,209 (6.91)

8 5 0.00635 (0.25) 48 (3.0) 963 (5.50) 1,043 (5.96)

9 5 0.009525 (0.375) 96 (6.0) 1,295 (7.40) 929 (5.31)
I

From Figure 5, it can be seen that the fracture toughness increased significantly from 1 to

3 plies, but as the number of layers increases from 3 to 5, only a slight increase in toughness

occurs. This data supports the conclusion also from the through-the-thickness tests discussed in

Section 3.2.

Figure 6 reveals interesting results about the influence of core density on the interface

fracture toughness. As the core density increases, the fracture toughness decreases. Although a

detailed micromechanical analysis may be necessary to explain this phenomenon a qualitative

explanation is as follows. The strain energy density is of the form c2/2E, and hence for a given

normal stress the energy stored in the core in the vicinity of the crack will be inversely

proportional to the Young's modulus of the core. The higher density core material has a higher

Young's modulus and hence will store less energy before failure. The fracture toughness is the

sum of the surface energy and the energy stored in the core just before the crack propagation.

Thus the high-density core leads to lower fracture toughness of the interface. As one might

expect, Figure 7 shows that core thickness has little influence on the fracture toughness of the

core/face-sheet interface.
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3.2 Flat-wise tensile tests

The results of fiat-wise tensile tests are presented in Table 6. The Young's modulus and

the tensile strength are actually the effective properties of the core/face-sheet structure. The

improvement in the stiffness and tensile strength of the composite with an increase in the number

of face-sheet plies should be noticed. The effective Young's modulus seem to increase with the

number of face-sheet plies. The increase is 15% for the 1.8 pcfcore and about 6% for the 3.0 pcf

core. This increase can be explained by the fact that the excess resin and the core form a stiffer

composite than the core itself. The effect of adhesive layer on the increase in stiffness is

dramatic. In fact there is a 25% increase in stiffness due to the adhesive film. Further, the

stiffness is much greater than the three-ply composite also. The increase in stiffness due to

increase in core density should not come as a surprise. The effects of number of face-sheet plies

on the flat-wise tensile strength is also similar to that on stiffness. There is a 10% increase in

strength for the 1.8 pcfcore and 17% increase for the 3 pcfcore. The effect of adding the film

adhesive to a single ply is the same as that of the 3 ply face-sheet, and in both cases the tensile

strength seem to approach that of the core. The strength values can be better understood fi:om the

"percentage debond" presented in the last column of Table 6. This is an estimated percentage of

the area of the core that failed at the interface. This number is estimated by visually inspecting

the face-sheet after failure for remnants of the core. It is a measure of the ratio of the interface

strength to the core tensile strength. A higher percentage debond indicates poor interface strength

compared to the core, and a lower percentage indicates a stronger interface. For example, one ply

with film adhesive produces the strongest interfacial bond. The percentage debond is

considerable less for 3 ply specimens compared to the single ply specimens for the same core

density. On the other hand the higher the core density higher the percentage debond.
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Table 6. Flat-wise tensile test results

Number of Core density,

face-sheet plies K_m 3 (pet')

1 29 (I .8)

3 29 (1.8)

t 48 (3.0)
3 48(3.0)
i + (film

adhesive)

48 (3.0)

Yotmg's Modulus,

N_a (ksi)

96.8 (14.0)
111 (16.1)
196 (28.5)
207 (.30.1)
246 (35.6)

Tensile strength,

MPa (.psi)

1.547 (224.4)

1.697 (246.1)

2.369 (343.5)

2.781 (403.3)

2.761 (400.4)

Percent

debond

68

1

90

21

0

3.3 Compressive Strength

A summary of the compression test data is presented ha Table 7. The table indicates the

four test variables, compressive strength and failure mode for each set of test. The results are

average of six tests for each set. A complete listing of the individual test results can be found in

Avery (1998).

Table 7. Failure loads and failure modes for compression tests

Test Set No. of Core Thickness Core Density Delam. Compressive Failure Mode
face-sheet m (in.) kg/m 3 (pcO Length Strength

Plies m (in.) Nlm _lb.lin.)
1 1 0.00635 (0.25) 29 (1.8) 0.0127 (0.5) 17,253 (99) L.A.

2 l 0.009525 (0.375) 48 (3.0) 0.0254 (I.0) 28,323 (162) L.S.

3 1 0.0127 (0.5) 48 (3.6)0.0381 (1.5) 28, 691 (164) L.S.

4 1 0.009525 (0.375) 96 (6.0) 0.0508 (2.0) 33,910 (194) L.S.

5 3 0.009525 (0.375) 48 (3.0) 0.0127 (0.5) 211,940 (1,210) L.S.

6 3 0.00635 (0.25) 96 (6.0) 0.0254 (1.0) 86,983 (497) L.S.

7 3 0.009525 (0.375) 29 (1.8) 0.0381 (I.5) 63,232 (361) L.S.

8 3 0.0127 (0.5) 48 (3.0) 0.0508 (2.0) 86,983 (439) L.S.

9 5 0.009525 (0.375) 48 (3.0) 0.0127 (0.5) 442,796 (2,528) G.S.

I0 5 0.0127 (0.5) 29 (1.8) 0.0254 (1.0) 212,815 (1,215) G.A.

11 5 0.009525 (0.375) 96 (6.0) 0.0381 (1.5) 242,592 (1,385) G.A.

12 5 0.00635 (0.25) 48 (3.0) 0.0508 (2.0) 156,345 (893) G.S.

13 7 0.0127 (0.5) 96 (6.0) 0.0127 (0.5) 793,109 (4,528) F.F

14 7 0.009525 (0.375) 48 (3.0) 0.0254 (1.0) 406,188 (2,319) G.A.

15 7 0.00635 (0.25) 48 (3.0) 0.0381 (1.5) 295,664 (1,688) G.S.

16 7 0.009525 (0.375) 29 (1.8) 0.0508 (2.0) 277,273 (1,583) G.A.

LA: Local, Antisymmetric. LS" Local, Symmetric. GA: Global, Antisymmetric,

GS: Global, Symmetric, FF: Face-Sheet Failure.
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Failure of the specimens can be broken down into five major groups or modes.

Generally, all the specimens in a set failed in a similar fashion near the same load. The failure

modes observed are local antisymmetric buckling (LA), local symmetric buckling (LS), global

antisymmetric buckling (GA), global symmetric buckling (GS), and face-sheet failure (FF).

Where local buckling refers to buckling of the composite near the delamination, and global

buckling refers to buckling oft.he sandwich structure as a whole, generally with the face-sheets

parallel with each other. Symmetric buckling refers to a mode shape that is symmetric about a

plane perpendicular to the loading axis passing through the mid-span of the specimen. These

shapes are illustrated in Fig. 8.

/
f
t
\
\

_Y/YJT/TA

i

i /
A B C D

Figure 8. Different buckling modes. A) Local antisymmetric buckling; B) Local symmetric
buckling; C) Global antisymmetric; D) Global symmetric

The load-deflection diagrams and pictures ofbuclded specimens for each type of failure

mode are presented in Figs. 9 through 18. There are four pictures for each specimen labeled a, b,

c and d. Loads corresponding to these pictures are marked in the load-deflection diagram also.

Referring to Table 7 it may be noted that specimens 1 through 8 failed locally. These

specimens had thin face-sheets, either 1 or 3 plies. Specimen 1 with the shortest delamination

(0.5 in.) failed in an antisymmetric mode. All others failed in a symmetric mode. Specimens 9 -

16 with 3 or 5 ply face-sheets failed in a global mode. When the core thickness was small, an

17
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antisymmetric mode was favored. For thick cores the failure was in a symmetric mode. Face-

sheet compressive failure occurred in Specimen 13 even before any significant buckling was

observed. This specimen had the maximum number of face-sheet plies (7 plies), a thick, high-

density core (0.5 in. thick, 6 pcf) and the shortest delamination (0.5 in.). Thus the global buckling

was prevented leading to face-sheet compressive failure. The compressive stress in the ply at the

peak load was estimated to be 256 MPa (37 ksi). Since this is much less than the compressive

strength of the material (531 MPa or 77 ksi), it is suspected that there should have been some

local buckling in the delaminated face-sheet that caused the failure.
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Figure 9. Compression test, Set I - local antisymmetric buckling
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Figure 10. Load-deflection curve, compression test Set I
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Figure 11. Compression test, Set 4 - local symmetric buckling
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Figure 12. Load-deflection curve, compression test Set 4
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Figure 13. Compression test, Set 11 - global antisymmetric buckling.
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Figure 14. Load-deflection curve, compression test Set 11
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Figure 15. Compression test, Set 12 - global symmetric buckling
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Figure 16. Load-deflection curve, compression test Set 12
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Figure 17. Compression test, Set 13 - face-sheet failure
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Figure 18. Load-deflection curve, compression test Set 13
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Using the results from the Graeco-Latin factorial plan an empirical formula was derived

for the ultimate compressive load as a function of the four variables under consideration. The

function is of the form:

F = C ft(t) f,_(a) f3(p_ ) f_(h_ )
(3)

where C is a constant, and f (t), f2 (a), f3 (P_), and f_ (h_) are functions of

corresponding arguments. These functions are plotted in figures 19 through 22. A polynomial fit

for each function is also included in the corresponding figure. The empirical model gives some

idea on how each variable affects the ultimate load, and this will be useful in deriving analytical

models.

From Figure 19, as we would expect, the failure load is increasing with number of plies

or face-sheet thickness. Figure 20 shows the relationship between delamination len_m.h and

failure load. The delamination length seems to be very critical for short delaminations, however

beyond 25.4x10 -3 m (1 in.), the debond length is less critical to the failure load. The reason is

that once the delamination exceeds a certain length, it cannot carry any significant load, and the

undelaminated face-sheet and the core become critical for the load carrying capacity of the

sandwich beam.

The next curve, Figure 21, shows the importance of the core density on the load carrying

capacity of the composite. There is a definite improvement from the 1.8 pcfcore to the 3.0 pcf

core, but this dramatic increase slows down in the range of 3 to 6 pcfcore density.
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Figure 19. Effect of face-sheet thickness on ultimate compressive load
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Figure 20. Effect of delamination length on ultimate compressive load
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Figure 22. Effect of core thickness on ultimate compressive load
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The effect of core thickness, shown in Figure 22, looks very much like the function for

core density previously discussed. An increase in thickness from 0.25 to 0.375 inches

dramatically increased the load carrying capacity of the specimen, but when the core thickness

was increased beyond that point, the benefit is reduced.

3.4 Analytical Model

A buckling model for delaminated sandwich composite such as the one used in the

present study was developed by Hwu and Hu (1992). This model uses a combination of laminate

theory and shear deformation theory. One of the limitations of this model is that it assumes

symmetry about the beam center, and thus the horizontal deflections and rotations are set to zero

at the center of the beam. The one-half of the beam is divided into three portions as shown in

Fig. 23. Portion 1 is the intact sandwich beam, 2 is the assemblage of one face-sheet and core,

and 3 is the debonded face-sheet. The shear-deformable sandwich beam theory is used for

portion1, and classical lamination theory is used for portions 2 and 3. The core is also assumed to

be infinitely stiff in the thickness direction, which is reasonably valid for the aramid honeycomb

core material. The reader is referred to Hwu and Hu (1992) for details of derivation of the

buckling loads. The buckling loads are given by:

where

_ Dt)I aP,.=(Dz+ D3 l, tanl_(L-a)

k m

A3

A." + A3 '

Pc,- kPcr

= D,(I- Pc,/ s)' - D: '

/ca (1-k)a ]-l
+ ) (4)

22 tan 22a _3 tan 23a
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1 _Bl1_, Di=(D,l- AIU' i= 1,2,3Ai- (A11)i' B_ =\All./i B21] i

Art, B_, and D_t are the extensional stiffness, coupling stiffness and bending stiffness of the

laminated composite, and S is the transverse shear stiffness. The symbol a represents half the

crack length and L half length of the beam. The subscripts i corresponds to the three portions of

the beam as shown in Fig. 23.

}_ L =I

2

Figure 23: One-half of the delaminated sandwich beam

Equation (4) was solved using an iterative procedure to obtain the buckling loads, which

are presented in Table 8. The "Percentage Difference" in the last column of Table 8 actually

represents the deviation of the experimental results from the closest analytical buckling load. In

sets 1 through 8, there is little correlation between the analytical loads and experimental failure

loads; however, there is a better correlation for sets 9 through 16. It should be noted specimens

belonging to sets 9 through 16 all failed globally except set 13, which failed by local

compression of the face-sheet before global buckling occurred (see Table 7, last column).

However in sets 9-16 the experimental failure load is always less than the analytical buckling

load except Set 16. Thus the linear buckling load calculated in this way cannot be considered as a
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conservativeestimateof the compressive strength of the sandwich beam. In general the

dimensions of the beam and delamination length used in this study cannot be considered long

enough compared to core thickness for the sandwich beam theory to be applicable. At least a

two-dimensional plane solid model in conjunction with post-buckling analysis will be required.

Table 8: Comparison of analytJ'cai (symmetric modes) buckling loads to experimental failure loads

Set

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

I 16

Analytical Buckling Load

Mode 1 Mode 2 Mode3

(Ib/in.) 0b./in.) (lb./in.)
142I 568, 701
361 143 321

ld 63; 143

9t 36 80

2,465i 2,6011 2.615

956i

427

240 t

1,480 3,134

655 1,441

736

Exptl. Failure % Difference*
Load

(lb./in.)

9_ 31

161 -14

164 -15

194 -141

1210 51

497 48

361 15
961 439

2.552' 2,614 2,621 ,,2.528
1.929 1,947 1,949 1215

-83

1

37

1,970i 2,773 5,098 IJ85 30

1,103 1,177 1,743 893 19

6.752 6,920 6.938 4,528 3311

2.592 2,620 2,623 2,319 11

1.729 1,747 1,749 1,688 2

1,456 1,462 1,462 1,583 -9

*Note: The experimental failure loads were compared with the nearest analytical buckling load.

Except for Sets 2, 3 and 4, the Mode l buckling load was the closest to the failure load. Mode 2
was the closest for Set 2, and Mode 3 was the closest for Sets 3 and 4.

4. CONCLUSIONS

Sandwich composites were fabricated using graphite/epoxy as face-sheets and aramid

honeycomb as the core material. Debonding between the one of the face-sheets and the core were

introduced using nonporous Teflon films. The effect of face-sheet thickness and core properties

on the interracial fracture toughness and flatwise tensile strength were studied. The fracture

toughness increased with the number face-sheet plies as the excess resin was available to
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improve thebonding. On the otherhandincreasein coredensity reducedthe fracture toughness.

The face-sheet thickness did not have any significant effect on the fracture toughness. The

interfacial strength also increased with the number of face-sheet plies. When the interface

becomes stronger, the failure is shifted to the core, leaving some core material adhering to the

face-sheet.

The axial compression tests were performed to determine the load carrying capacity of

debonded sandwich beams. When the face-sheets were thin (1 or 3 plies) local buckling is

favored, For thick face-sheets (5 or 7 plies) global buckling occurs. When the face-sheet is thick,

and also when the core is thick and stiff, face-sheet fails under compression. It was found that the

interfacial bonding between the core and the face-sheet was strong enough to prevent disbond

growth. The load carrying capacity is limited by the core shear or compressive strength. A

simple analytical model based on beam theories was used to predict the buckling loads of the

specimens used in the study. The Mode 1 buckling load predicted by the model was close to the

experimental failure loads only in specimens in which global buckling occurred. A plane strain

finite element post-buckling analysis is underway to predict the behavior of debonded sandwich

composites in the entire range of material properties and debond lengths.
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